Seizures in Palliative Care

Focus on levetiracetam

Dr. Fiona Kiely
Masterclass Palliative Care 2019
Aim of talk

• Explore the epidemiology of seizures in palliative care contexts

• Review the evidence for subcutaneous use of newer antiepileptic drug (AED) levetiracetam in palliative care contexts including end of life.
In many cultures are associated or symbolize death

May be seen as a transient form of death or in some Indo-European cultures perceives death not as the end, but as a step, as a point the life cycle is passing through
Qualitative studies

• Contemporary young student with temporal lobe epilepsy

“The anguish goes through my stomach and comes up to my throat.... I lift my hand to my forehead, lift my eyes: I am behind a glass pane. The landscape has changed, it is mortuary. Deep despair fills me and tells me it is all over. I am going to die.... At that moment there is no time factor. I am there for eternity ... I need to tell someone I am leaving very far away for if there is no one there I will never come back ... I have to scream. I need a human being to pull me up to the surface, to hold me, to give me warmth. For I am going to die. That is a certainty.... I try to make a last movement with my hand or my eye, but I am powerless. I drift into this experience of horror.”

Reflection felt like moving from a physical state

Intellectually knows not going to die, yet everytime it happens is convinced
What is a seizure?

• A seizure is a sudden, uncontrolled electrical disturbance in the brain. It can cause changes in behaviour, movements or feelings, and in levels of consciousness.

• A seizure may be the expression of epilepsy

• Defined as “the enduring predisposition to generate epileptic seizures and requires the history of at least one seizure”

• Seizures without having epilepsy (eg acute symptomatic provoked seizure)
• Can be challenging symptom control issue

• Distressing and risk brain damage if prolonged

• Palliative care emergency

• Consequences include rehospitalization, ED visits, health economics, QoL, cognitive consequences, carer distress
A Focus on Cerebral Malignancy

Neuro-Oncology Practice
Neuro-Oncology Practice 1(3), 134–140, 2014
doi:10.1093/noononu018

Epilepsy in the end of life phase of brain tumor patients: a systematic review

Johan A.F. Koekkoek, Linda Dirven, Joap C. Reijnveld, Tjeerd J. Postma, Robin Grant, Andrea Pace, Stefan Oberndorfer, Jan J. Heimans, and Martin J.B. Taphoorn

Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands (J.A.F.K., L.D., J.C.R., T.J.P., J.J.H., M.B.T.); Department of Neurology, Medical Center Haaglanden, The Hague, The Netherlands (J.A.F.K., M.B.T.); Edinburgh Centre for Neuro-Oncology, Western General Hospital, Edinburgh, Scotland (R.G.); Neuro-Oncology Unit, Regina Elena Cancer Institute, Rome, Italy (A.P.); Department of Neurology, Landesklinikum St. Pölten, Sankt Pölten, Austria (S.O.)

Corresponding Author: Johan A.F. Koekkoek, MD, Department of Neurology, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands (j.koekkoek@vumc.nl).

ARTICLE INFO

Article history:
Received 15 September 2014; Revised 10 December 2014; Accepted 10 December 2014

Keywords:
Epilepsy Brain tumors Neurosurgical access Glial tumors Sclerotherapy Surgery

ABSTRACT

Seizures are among the most common presentations of brain tumors. Several tumor types can cause seizures in varying rates, neurosurgical tumors and the gliomas are the most common ones. Brain tumors are the second most common cause of focal ictal and ictal epilepsy in epilepsy surgery series, with the highest frequency being dysplasias, incidental tumors and gangliogliomas. Seizure management is an important part of the treatment of patients with brain tumors. This review discusses clinical features and current management of seizures in patients presenting with brain tumors. Current management of seizures in patients with brain tumors includes antiepileptic medication and surgical intervention, with the help of meta-analysis data. Tumor-related seizures are best managed with or without secondary generalization. Seizures may occur either as initial symptoms or during the course of the disease. Brain tumors related epilepsy parallel to be resistant to antiepileptic drugs and treatment of tumor is much more important for the seizure control. Early surgery and excision of the tumor removal are important factors for better seizure freedom. Particularly in neurosurgical tumors and low grade gliomas. Selecting the right therapeutic antiepileptic drug, the general approach to partial epilepsies can be simplified. There are several factors influencing epileptogenesis in brain tumor-related epilepsy, which also explains clinical heterogeneity of epilepsy among tumor types. Identification of these factors and development of effective antiepileptic drug treatment can result in improved seizure control and further studies are needed to prove antiepileptic effects of different antiepileptic drugs.

(© 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.)
• Occur in approx. 13% of palliative care patients

• Most common cancer cause = Brain mets
 - 35% seizures

• Most common adult 1 brain tumour = Glioma
 - 40 – 60% seizures (WHO III – IV)

• Systematic review of seizure prevalence in cerebral malignancy, across hospice, home & hospital 6 – 56%

• Suggestion that prevalence increases towards death

Seizures – Malignant & Non-Malignant

<table>
<thead>
<tr>
<th>Structural</th>
<th>Systemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary tumours, metastases, abscesses, reversible posterior leukoencephalopathy syndrome, paraneoplastic limbic encephalitis, haemorrhage, or radiation necrosis</td>
<td>Hypoxia, hypoglycemia, hyperglycemia, hyponatremia hypernatremia, low levels of magnesium, hypocalcemia, hypercalcemia, uremia, and hepatic failure, as well as various medications, such as ondansetron, antipsychotics, and chemotherapeutic agents</td>
</tr>
</tbody>
</table>

Most new seizures in adult palliative care are focal onset +- secondary generalization
Cerebral malignancies

• The seizure risk is influenced by a number of factors: type and location of tumour and the number of the lesions, growth rate

Epileptogenesis – Risk stratification

Higher Risk
- Slow growing tumour e.g. gangliogliomas
- Multiple tumours
- Cortical tumour
 - Frontal
 - Temporal
 - Parietal

Lower Risk
- Fast growing tumour e.g. GBM
- Solitary tumour
- Occipital
 - Infratentorial
Loss of oral route

• Oral route less reliable with PoD and end of life approaches

<table>
<thead>
<tr>
<th>Dysphagia Prevalence in Brain Tumour</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>40%</td>
<td>3/12</td>
</tr>
<tr>
<td>70%</td>
<td>1/12</td>
</tr>
<tr>
<td>82%</td>
<td>Days</td>
</tr>
</tbody>
</table>

• Up to 94% of brain tumour patients, progressive confusion or coma are reported in the last days before death.

• Hampers regular oral AED ingestion

• The consequences of discontinuing AEDs in the EOL phase remain largely unknown.

• Sizoo et al (2013) found that seizures took place in 10 of 29 patients (35%) whose AEDs were tapered during the EOL phase.

• Have to assume risk increases

Brain tumours

- Clinical trend = newer AEDs
- Lower adverse effect and drug interactions
- Unlike carbamazepine, phenytoin, phenobarbitone, not known to interact with dexamethasone or induce CYP450
- AEDS should not be used prophylactically in absence of history of seizures
 - In RCTs they do not reduce the risk
 - Peri-neurosurgical use possible exception, but results conflicting, most recent Cochrane review (2018) insufficient, low quality evidence
 - If used, prophylactic levetiracetam appears more effective than phenytoin (incidence 0% V 16%

Loss of oral route / impaired consciousness

• IV / PR routes often not possible / desired
• Switch from PO to subcutaneous route = common practice
• SC therapeutic options limited and limited evidence to guide

“Stopping oral levetiracetam and commencing CSCI midazolam. Starting dose range 10 – 30mg, dose escalated if seizures witnessed. Addition of phenobarbital if seizures remain uncontrolled”
• Balance effective seizure control against (un)wanted side-effects

• Consider the patient who may regain consciousness following a post-ictal period

• Parenteral levetiracetam offers possibility of seizure control when oral route non-viable with less associated sedation
Levetiracetam

- **Levetiracetam** (LEV) is one of the newer and most frequently used AEDs
- It has proven effective and safe in treating multiple seizure types, in both adults and children older than one month.
- Can be valuable for acute seizure management

• Class: **SV2A Ligand**, K, Ca channels

• Pharmacology: Binds to synaptic vesicle protein SV2A in the brain interfering with release of neurotransmitter stored within the vesicle.

• It gains access after neurotransmitter release as vesicles recycled

• It selectively inhibits rapidly firing neurons
• https://vimeo.com/192640952
Levetiracetam for epilepsy: an evidence map of efficacy, safety and economic profiles

Most comprehensive synthesis of up-to-date evidence
“Evaluate the efficacy, safety and economic profiles of LEV compared with all other AEDs for epilepsy, to provide evidence-based information for the rational use of LEV and research agendas”
Evidence map indicated that LEV had similar efficacy in seizure freedom compared with conventional AEDs and was superior to placebo in seizure freedom.
Safety

LEV lower risk leukopenia, rash, deranged LFTs, nausea than with carbamazepine

Higher risk of irritability with LEV than placebo

It works. It is non-inferior in efficacy to other AEDs. Also...lower risk of discontinuation
The body of randomised evidence to guide clinical decisions is small. It was uncertain whether any anticonvulsant therapy was better than another in terms of adverse effects, due to few studies and participants identified.

Eighteen studies with 2755 participants were included, heterogenous. Most evidence examines benzodiazepines and they remain first-line treatment (IV lorazepam > diazepam, phenytoin). Both levetiracetam and lorazepam were equally effective in aborting seizures (RR 0.97, 95% CI 0.44 to 2.13).
Levetiracetam – Oncology Population
Levetiracetam for seizure prevention in brain tumor patients: a systematic review

Ziad Ghantous Nasr¹ · Bridget Paravattil¹ · Kyle John Wilby¹

3 randomized controlled trials, 7 prospective observational studies, and 11 retrospective observational studies. All studies high risk bias*

Conclusion: Levetiracetam appears effective and safe for reducing seizures in patients with brain tumors and may be considered a first-line agent

Proviso: Urgent need for more high quality prospective data assessing levetiracetam and other antiepileptic drugs in this population
Why attractive?

Safety & tolerance

- NB No interaction with dexamethasone or CYP450
- Less likely to discontinue
- Caution in renal impairment and severe hepatic impairment
- Very common: Fatigue, drowsiness, headache
- Common: Behavioural, depression, diarrhea, ataxia
- Rare: psychosis, AKI, EPSE
1 small unblinded randomized trial of switch from phenytoin to levetiracetam for glioma seizure control vs phenytoin continuance.

Non-inferior and ? Benefit of less drug interactions.

10 RCTs (N = 1815) Limited & low quality evidence.

So AED prophylaxis not recommended.
Levetiracetam – Palliative Care
• Now a commonly used first line choice for seizure management in palliative care
• Focal - secondary
• Efficacy and tolerability compare favorably to other AEDs used in focal seizures
• Few drug interactions, can be used when other AEDs are CI due to hepatic, cardiac issues
• IV / SC / reports compounded suppositories
Methods of administration

- **Levetiracetam** can be given †SC b.i.d., diluted in 100mL sodium chloride 0.9% and infused over 30min. The dose is the same PO/SC/IV.

- Levetiracetam can also be given by †CSCI diluted with either water for injection or sodium chloride 0.9% when necessary.

- By CSCI, although there are no formal laboratory compatibility data, Generally, sodium chloride 0.9% is used as diluent and local skin reactions occur in about 5% of patients.

- Alternative SC/CSCI anti-epileptics include lacosamide, midazolam, phenobarbital and valproate.

- May be used in status refractory to BDZ, 20 – 30mg/kg single IV bolus. ?equal efficacy to phenytoin, valproate.

Subcutaneous Levetiracetam

• Small but increasing evidence base to support subcutaneous use
• Case report and small observational studies demonstrate efficacy, tolerability and compatibility
• Sutherland et al (2018)
 • Subcutaneous levetiracetam for the management of seizures at the end of life. BMJ Supportive & Palliative Care, 8(2), 129-135.
Literature review + Observational study
• Given nature of the available literature, unable to perform meta-analysis
<table>
<thead>
<tr>
<th>Primary outcomes</th>
<th>Secondary outcomes</th>
</tr>
</thead>
</table>
| Assess efficacy of SC levetiracetam (no. pts with no reported seizure activity over total reported periods) | Descriptive data on SC administration
- Mode
- Diluent
- Dose
- Conversion rate
- Breakthrough treatment
- Concomitant use of other AEDs
- Serum monitoring
- Duration of treatment |
| Assess tolerability (no. pts reported to have adverse effects) | |
Literature Review

<table>
<thead>
<tr>
<th>Database</th>
<th>Search Terms</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMBASE</td>
<td>“subcutaneous” AND “levetiracetam” OR</td>
<td>89 records</td>
</tr>
<tr>
<td>Medline</td>
<td>“subcutaneous” AND “Keppra”</td>
<td></td>
</tr>
<tr>
<td>CINAHL</td>
<td>“levetiracetam SC”</td>
<td>7 excluded</td>
</tr>
<tr>
<td>Clinical Trials.gov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHO International Trials Registry</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Updated search to 2016</td>
<td>4 case reports 3 case series</td>
</tr>
</tbody>
</table>
What do the papers say?

- 53 adult patients in 7 papers, with a range of diagnoses

<table>
<thead>
<tr>
<th>Efficacy</th>
<th>3/53 reported to have seizures while on LVC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>36/53 concomitantly received other AED (undescribed)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Safety</th>
<th>3/53 site reactions (but on other meds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/53 rash</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>46/53 CSCI (dose range 250 – 4000mg daily) 1:1 conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5/53 intermittent SC bolus (diluted to 2.5mg/ml)</td>
</tr>
<tr>
<td></td>
<td>2/53 intermittent SC (100ml N saline BD over 30 mins)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length of treatment</th>
<th>1 – 47 days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40/53 continued until death</td>
</tr>
<tr>
<td></td>
<td>3/53 improved and returned to PO</td>
</tr>
<tr>
<td></td>
<td>1/53 stopped due to rash</td>
</tr>
<tr>
<td></td>
<td>5 cases missing</td>
</tr>
</tbody>
</table>
Prospective observational study

• Data collection sheet informed by the literature review
• 6 centres in Thames Valley region over 1 year
• All patients under care SPC, all inpt (bar 1)
• 20 cases in 18 patients, 19/20 cases had been on oral levetiracetam

<table>
<thead>
<tr>
<th>Efficacy</th>
<th>7/18 seizure – 3 resolved with increase Levetiracetam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13/18 on concomitant AED</td>
</tr>
<tr>
<td>Safety</td>
<td>1/18 site rxn</td>
</tr>
<tr>
<td></td>
<td>1/18 sterile abscess (after 25/7)</td>
</tr>
<tr>
<td>Mode</td>
<td>18/18 CSCI (500 – 3000mg daily), X 2 12 hourly SD if >2400mg Water for injection</td>
</tr>
<tr>
<td>Duration</td>
<td>12/18 continued to death</td>
</tr>
<tr>
<td></td>
<td>3/18 recovered oral route</td>
</tr>
</tbody>
</table>
Impression

• Prospective data compares well with exiting case series
• Appears to be safe and well tolerated and causes site reaction infrequently
• Intermittent SC bolus only reported in 2 cases
• Available data seems to therefore support CSCI over bolus
• ¾ site reactions occurred when levetiracetam was mixed
• Therefore advise keep separate
• Still uncertain re pharmacokinetics, bioavailability SC so if breakthrough seizures manage in established way.
• Max 2g CSCI X 24 hours
• Adjust for renal failure
• Off licence use - ?discuss
Antiepileptic Therapy – Guiding Principles

• Respecting patient and family resources and wishes
• QoL
• Consider current & future requirements of therapy
• Ensuring practicality (eg community access and reimbursement)

Quirky musings

Survival
Things to consider / Observations

• Definition of “efficacy” to measure success
• - needs to incorporate values, meaning, experience, QoL, not all identifiable quantitatively
• Qualitative research to be incorporated
• Pharmacovigilance studies should be informed by specific side effects eg psychiatric as may not be recognized / volunteered
• Survival data on this population ? Predictor of death
Incidence rate of sudden death in epilepsy: A systematic review and meta-analysis

Erik Saetre a,⁎, Michael Abdelnoor b, c

https://doi.org/10.1016/j.yebeh.2018.06.037

Review

A systematic review of sudden unexpected death in epilepsy (SUDEP) in childhood

Omar Abdel-Mannan a,⁎, Henry Taylor b, Elizabeth J. Donner c, Alastair G. Sutcliffe d

a Department of Neurology, Great Ormond Street Hospital for Children NHS Trust, London, United Kingdom
b Department of Paediatrics, Northwick Park Hospital, London North West Healthcare NHS Trust, London, United Kingdom
c Department of Neurology, The Hospital for Sick Children, Toronto, Canada
d Population, Policy and Practice Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
Non-convulsive status epilepticus (NCSE)

- Continuous or recurrent seizure without convulsive activity

- Diagnostic and therapeutic challenge

- Clinical symptoms may be subtle / masquerade
 - Altered consciousness
 - Automatisms
 - Myoclonus

- Do we consider this in practice? How would people respond to AEDs? Who is at risk
