Update on the management of CNS tumours

Oncology Update
Sobell Study Day 16/11/18
Claire Hobbs
Clinical Director Oncology and Haematology

Brain tumours (primary) and brain metastases in adults

- NICE guideline [NG99] Published date: July 2018
- https://www.nice.org.uk/guidance/ng99/chapter/rationale-and-impact

Radiology
Low Grade Glioma

- MRI features
 - Grade 1 pilocytic astrocytoma: ALL enhance
 - Grade 2 astrocytoma: Increase T2 is all tumour, often widespread. Don’t enhance. Often v large with mass effect and minimal symptoms

Glial Tumours

- Diffuse Grade 2 astro or oligo
 - Astrocytoma
 - IDH Mutated
 - IDH wildtype
 - NOS
 - Oligodendroglioma
 - IDH Mutated, 1p19q codeleted
 - NOS

- Others astrocytic
 - PA
 - FMA
 - SEGA
 - FXA
 - APXA
- Other glioma
 - Chordoid
 - Angiocentric
 - astroblastoma
Radiology Grade 3 Gliomas

- MRI features
 - Grade 3 astrocytoma: 80% enhance, T2 abnormality is all tumour.
 - Note may have G2 progress to G3
 - Oligodendroglioma: Usually calcified, enhancement does always NOT mean anaplastic
- rCVB increase
 - Early Indication of high grade transformation even if noenhancement

Radiology Grade 4 Tumours

- MRI features
 - all enhance
 - Usually significant surrounding oedema
 - Cells up to 2cm beyond enhancing edge
 - May be multifocal
 - May have non enhancing areas

Glial Tumours

- Grade 4.
 - Glioblastoma
 - IDH Mutated
 - IDH wildtype
 - NOS
 - Diffuse midline glioma H3K27M mutated
- Grade 3
 - Anaplastic Astrocytoma
 - IDH Mutated
 - IDH wildtype
 - NOS
 - Anaplastic Oligodendrogliaoma
 - IDH Mutated, 1p19q codeleted
 - NOS

Histologic Genetic features

- IDH1 or IDH 2 mutation.
- disrupts control of histone methylation
- Better prognosis
 - Grade 2 astro + oligo – 80%
 - Grade 3 astro + oligo – 80%
 - Grade 4 GBM
 - Primary – IDH 1 not seen
 - Secondary – common
 - >60 years – not seen

- Methylation of MGMT
- Disrupts methylation
- Better prognosis
 - Grade 2 astro – 80%
 - Grade 2 oligo - most
 - Grade 3 astro – 50%
 - Grade 3 oligo – 70%
 - Grade 4 GBM - 50%
Implications of genetic changes

- 1DH1 and IDH2 mutation
 - Better prognosis if present – no therapeutic implication
- Meth MGMT
 - Better prognosis if present
 - Indicates higher response to temozolomide (esp GBM > 70)
- 1p19q co-deletion (ONLY Oligodendroglioma)
 - Better prognosis if present
 - Predicts higher response to PCV chemo

Medical management

- Dexamethasone + PPI
 - Post op reduction to nil - (nb not if biopsy only)
 - Try NOT to increase to 16mg with every admission!
- Antiepileptic
 - No prophylactic anticonvulsant (no evidence of benefit)
 - If seizures: keppra first line and lamotrigine usually second line
- VTE – 20% of HGG - use LMWH
- Antidepressants – often needed

Surgical management – new techniques

- Stealth guided stereotactic procedures
- Functional imaging before surgery
- 5ALA to highlight tumour - emits blue light

Surgical management – new techniques

- Awake craniotomy with electrocortical stimulation
- Mini-craniotomy and endoscopic debulking
- Aggressive supra-total resection for LGG (T2 tumour + margin) - reduced anaplastic transformation
High Grade Glioma
Incidence and Age Distribution

- Most common type of brain tumour
- Incidence 5 per 10^5 in UK

How do we know who will do better?

- Histological grade (grade 3 better than 4)
- Age (less than 45 > less than 65 > over 65)
- Pre-op performance status 0-1 >2>3-4
- Length of history of fits (none = worse prognosis)
- Low grade transformation to high grade
- Extent of resection - >90% resection vs biopsy only

RT treatment for patients with brain tumours

- Treatment
 - 6 – 33 fractions
 - Daily (Mon to Fri)

Positioning the patient – conventional mask.
Planning radiotherapy

- Treatment planning RA IMRT

Radiotherapy Treatment

- Linear Accelerators

Treatment delivery

- Radiographers check the patient position (On Board Cone Beam CT or ExacTrac imaging) – 5 – 10 minutes

- Deliver the treatment – 2-5 minutes
 - Conformal Fixed beams from 2-4 angles
 - Intensity Modulated Radiotherapy gives better shaping around the tumour – takes a long time 7-9 beams
 - We use Rapid Arc – 1-3 arcs round the patient – very quick
Radiotherapy – GBM: Indications

- Historic data following biopsy or “resection” (1978)
 - BTCG (Walker J Neurosurg 1978) Med Surv 1 yr Surv
 - Surgery + steroids 14 weeks 3%
 - Surgery + 50-60Gy WBRT 35 weeks

- Current standard: age 18 – 70 years PS=0-1:
 - Radical treatment RT + Temozolomide after resection or biopsy only
 - 60 Gy in 30 # over 6 weeks, then 6 -12 cycles adjuvant temozolomide

Temozolomide

- Cytotoxicity of temozolomide is mediated mainly through methylation of the O6 position of guanine
- This DNA damage is rapidly repaired by MGMT
- Methylation of the MGMT gene increases sensitivity to Temozolomide (50% of GBM have meth MGMT)

Temozolamide – Side Effects

- Nausea and vomiting
- Constipation (ondansetron)
- Myelosuppression (week 3 – 4)
- Sore mouth
- Fertility impairment
- Rare – rash or Stevens Johnson syndrome
- Generally very well tolerated
Side effects of RT - Early

- Acute
 - skin red, sore, blistering
 - Hair loss
 - Headache
 - nausea
 - fatigue
- Early delayed – transient demyelination due to temporary deletion of oligodendroglia
 - “3 months after RT worse than during”
 - somnolence syndrome

Toxicity of RT - Late

- Occurs 2 to 10 years post RT
- Cerebral changes due to oligodendrogial loss and endothelial damage, cause demyelination & necrosis
 - poor short term memory and concentration
 - Psychomotor speed reduced
 - Dementia, spasticity, seizures - very rare (WBRT, dose)
 - 5% risk of necrosis if >72Gy in <2.5Gy
 - 50% risk of cognitive decline at 12 years for LGG
 - T2 hyper-intensity on MRI within RT fields.

Toxicity of RT - Late

- Impaired short term memory
- Large volume old fashioned RT – reduced mobility and cognitive function (like dementia)
- Permanent hair loss much less with RapidArc
- Pituitary function. (>2 years) – check annually if pituitary in RT volume. Esp if >40Gy
- CVA – 4 x increased relative risk after pituitary RT
- Second malignancy

GBM in >70 year olds

- Hypofractionated RT for over 65 years old
 - EORTC trial 26981 (Perry) 2016
 - 40/15 + temozolomide – meth MGMT positive MS – 13 months
 - 40/15 alone – meth MGMT negative MS – 8 months
- Paradigm study open in Oxford:
 - meth MGMT negative: 40/15+PARP inhibitor/placebo
- Pragmatic about need for biopsy for this group. If not for chemo we don’t pursue biopsy and give 34Gy/10 or nothing. PS3-4 - no treatment prognosis 2-3 /12
Overall survival EORTC 26981. >65 RT+/– temozolomide

Grade 3 Astrocytoma - management

- CATNON/ BR14 trial – Lancet Oncol 2017
 - Grade 3 tumours with no 1p19Q (i.e. Anaplastic Astro)
 - RT +/- temozolomide during RT +/- 12 months temozolomide
- Adjuvant 12 months temozolomide
 - % 5 year OS Median PFS
 - No (n = 372) 44.1% 19.0 mo
 - Yes (n = 373) 55.9% 42.8 mo

Overall Survival curve for Adjuvant Temozolomide for Grade 3 astrocytoma

Anaplastic Oligodendroglioma

- RT 59.4 Gy / 33 x 1.8 Gy fractions
- The PCV chemo x 6 cycles from 2 trials
 - EORTC 26951 and RTOG 9402 trials
- Survival benefit
 - MS >12 or 14 years for RT + PCV
 - vs
 - 7-9 yrs with RT alone
Relapse / Progression
- Consider re-operation
 - if good PS (>70%)
 - mass effect or cyst for aspiration
 - median survival 14-36 weeks from re-operation
- Consider chemotherapy
- Otherwise
 - Ensure that patient is on lowest possible dose of steroids
 - Assess/arrange palliative care involvement with GP/hospice

Chemotherapy in Relapsed HGG
- Our policy:
 - Re-expose to temozolomide if initial response and >3 months treatment free (gives a 30% 6 months PFS)
 - Lomustine chemotherapy if <3 months or not good response – EORTC 26101:BELOB trial 2016 lomustine +/- avastin
 - MS = 8-9 months no sig difference.
 - Response – about 20%

PCV – Side Effects
- Nausea and vomiting day 1-2 – (significant)
- Rash + photosensitivity (procarbazine)
- Procarbazine interactions (weak MAOI and antabuse)
- Myelosuppresion (week 4-6) – can be profound
- Peripheral neuropathy (vincristine)
- No hair loss
- Infertility

New approaches: Targeting the Vasculature—Anti-angiogenesis in Treatment of GBM
- Neovascularization is a hallmark of GBM
- VEGF mRNA is up to 50 fold overexpressed in GBM
 - VEGF inhibitors (Bevacizumab and Cediranib)
 - Integrin inhibitors which inhibit angiogenesis (Cilengitide)
- However, to date these have not impacted with a survival benefit for these patients in the adjuvant or recurrent setting. (Gilbert 2013, Wick 2013).
- Bevacizumab +/- irinotecan for relapse post temodal MS 8 months both arms (BRAIN study) – licensed, but not compared with Lomustine
NEW approaches: Immunotherapy...

- DC Vax - autologous tumor lysate-pulsed dendritic cell vaccine
 - Phase 3 trial with 90% of patients receiving DCVax due to crossover on progression. MS 23 months from surgery trial outcomes not yet announced. (NB exclusion if progression after surgery +RT).
- Ipilimumab – CTLA4 inhibitor – promotes T cell
 - Phase 3 trial IpiGlio – about to start in Oxford. Adjuvant Ipi

Low grade glioma – benefits of RT

- 50% of patients - tumour shrinkage > 50%
- Some patients – improved epilepsy control
- CTVO = region of T2 intensity + 1cm.
- 60% 5 year survival if RT given initially or on disease progression
- 14 month improvement in progression free survival

LGG 5 prognostic factors

- age > 40,
- astrocytoma subtype,
- tumours > 6cm,
- those crossing midline, and
- presence of neurologic deficit before surgery are poor prognostic features.
- High risk (>=3) MS 3 years
- Low risk (0-2) MS >7 years

Outcome High risk LGG RT +/- PCV

<table>
<thead>
<tr>
<th></th>
<th>Overall survival</th>
<th>Median</th>
<th>% 5 year</th>
<th>%10yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT (n = 126)</td>
<td></td>
<td>7.8</td>
<td>63.1%</td>
<td>40.1%</td>
</tr>
<tr>
<td>RT+PCV (n = 125)</td>
<td></td>
<td>13.3</td>
<td>72.3%</td>
<td>60.1%</td>
</tr>
</tbody>
</table>

Bruckner RTOG NEJM 2016.

Low Grade glioma (astrocytoma or oligodendroglioma) at high risk of recurrence should have RT + PCV chemo following surgery...
Ependymoma

- **Low grade**
 - Local RT (50 – 55 Gy) if unresectable or partially resected.
 - Myxopapillary ependymoma – very good prognosis. (no RT)

- **Anaplastic grade 3**
 - Stage spine (MRI + CSF)
 - If CSF/MRI + - Craniospinal RT
 - MRI or CSF neg Local RT only (54 – 59.4Gy)

Radiotherapy for Benign Tumours

- **Consider if**
 - Incomplete excision
 - Unresectable
 - Symptomatic (eg acromegaly not controlled with med)

- Pituitary adenoma
- Meningioma: G1, G2 recurrent or critical site. G3 all RT
- Craniopharyngioma usually cyst drain + RT
- Vestibular Schwannoma (SRS)
- Cordoma/chondrosarcoma – Proton

Stereotactic RT

- **RT technique**
 - Precision immobilisation and RT delivery

- **Fractionation**
 - Single radiation treatment (radiosurgery - RS)
 - 2 – 5 fractions (stereotactic RT - SRT)
 - >5 fractions SRT (eg skull base meningioma)

Aims

- Achieve uniform dose homogeneity within planning target volume
- Minimise dose to surrounding normal tissue.
 - Rapid dose all off at the field edge - typical distance from 90% to 50% is a 1-3 mm
 - Low dose exposure related to RT induced malignancy so should be reduced in CNS and trunk
SRS
- Linac-based
- Gamma Knife
- Cyber Knife
- All ways of delivering very high doses of radiation to very small tumours in the brain in a single treatment.
- Many studies comparing techniques/equipment. No clear advantage to any particular one. NHSE has commissioned all three within the UK.

Indications for SRS/RT
- SRS (single fraction)
 - brain metastases (<20cm³ total volume).
 - Prognosis>6 months, controlled extracranial disease.
 - If close to brain stem can give 5 fraction SRT
 - Vestibular Schwannoma
 - Pituitary adenoma recurrence – if >3mm from chiasm
 - Arteriovenous malformations
 - Trigeminal neuralgia
- SRT (conventional fractionated treatment)
 - Meningioma – if near critical structures: esp skull base
 - Pituitary adenoma / craniopharyngioma
 - Chordoma / chondrosarcoma if proton therapy not an option

Gamma Knife
- 192 Cobalt-60 sources
Linac-based

- Linear Accelerator
- ExacTrac imaging
- RapidArc or Dynamic conformal arcs (DCA)

Mask for Linac based Stereotactic Radiosurgery

Treatment planning SRS single fraction

Linac-based

- Mask (frameless radiosurgery)
Treatment planning SRT multiple mets treated with 6 Rapid Arcs

Management of patients with brain metastases

- 40% of cancer patients develop brain metastases
- Steroids alone - Median survival is 2–3 months
- Whole brain radiotherapy (WBRT) median survival is about 3–6 months
 - NB: QUARTZ trial showed no survival benefit to WBRT for lung cancer patients with multiple mets

- But if patients are good PS, controlled systemic disease consider:
 - Surgery: ms 9-12 months
 - Or SRS: median survival 10-18 months

Which patients are offered surgery?

- Larger brain metastases (>20cm³)
- 1-2 lesions – usually same side of brain
- Clinically relevant mass effect
- Large Posterior fossa mets with risk of hydrocephalus
- In order to obtain histology
- Option: operate on larger lesion, give SRS to smaller ones.
- Key issue: must have controlled systemic disease or a plan to go on to further systemic therapy.

Surgery Metastatic Melanoma- Endoscope assisted resection
How effective is SRS alone?

- Reported local control rates for patients with small volume brain mets (<20cm³)
 - 90–94% for breast cancer metastases
 - 81–98% for lung cancer
 - 73–90% for melanoma
 - 83–96% for renal cell cancer
- Overall – approx. 70% local disease control.
- Progression free survival 4-5 months

Survival

<table>
<thead>
<tr>
<th>RTOG Recursive Partitioning Analysis (RPA) for brain metastases</th>
<th>Median Survival WBRT</th>
<th>Median Survival SRS</th>
</tr>
</thead>
</table>
| **Class I**
 - KPS >=70, <65 years, controlled primary, no extra-cranial metastases. |
 - 7.1 months. |
 - 18 months |
| **Class II**
 - Neither I nor III |
 - 4.2 months |
 - 10 months |
| **Class III**
 - KPS <70. |
 - 2.3 months |
 - n/a |

SRS tolerability

<table>
<thead>
<tr>
<th>Side effect</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>Ondansetron 8mg bd x 2 days</td>
</tr>
<tr>
<td>Fatigue</td>
<td>Seems quite minor</td>
</tr>
<tr>
<td>Hair loss</td>
<td>Patchy if met near scalp</td>
</tr>
<tr>
<td>Seizures</td>
<td>1 week after treatment….</td>
</tr>
<tr>
<td>Headache</td>
<td>Dex 6mg bd x 2 days (then tail down over 4 days</td>
</tr>
<tr>
<td>Radio-necrosis</td>
<td>If Brain – GTV V12Gy is 10cm³. ≈10% risk (NB if multiple mets max V12Gy < 30cm³</td>
</tr>
</tbody>
</table>

WBRT after SRS or Surgery?

- EORTC trial (Kocher et al JCO 2011)
 - +/- WBRT post surgery (160 pts) or radiosurgery (199 pts)
 - 1 to 3 mets
- Results WBRT vs observation
 - No survival benefit (median survival - 10.9 mo)
 - Delays neurological progression by 1.2 months.
 - Reduces intracranial relapses and neurologic deaths (44% vs 28%)
 - Fails to improve the duration of functional independence
Proton therapy

- Positive charged particle

Support for Patients and Relatives

- CNS, CNS, OT, Physio
- Histology clinic – rapid oncology appt
- Written information sources
 - Nurse specialist packs given to patients
 - Steroid booklet, epilepsy booklets
 - Brain RT info sheet, chemo MacMillan info sheets
 - Patient organisations
 - Brain Tumour Foundation
 - British Brain and Spine Foundation
 - MacMillan
- Driving
 - At least 2 years off driving – high grade (3+4) brain mets
 - 1 year off for grade 1,2